Gemologist Guide to Identifying Ammolite

Ammolite is known for producing an incredible iridescent color when observed under direct light. The colors observed in individual stones can run the entire color range or be one or two colors.

Iridescent aragonite is the actual mineral name for ammolite and is found in two species of extinct ammonite fossils.

When attending rock and mineral shows you might come across stones that are similar to ammolite but use the trade names of korite, calcenite, or ammonite shell.

This rare material comes from a small area along the St. Mary River in southwest Alberta, Canada, and is mined by two companies from thin layers in the Bearpaw Formation, where the fossils are found.

 

How to Identify Ammolite Through Testing

There are various ways to identify rocks, minerals, crystals, and gemstones, but we will use a method I learned while attending the Gemological Institute of America.  If you’ve learned a unique way to identify gems, please share it with us.

Let’s look deeper into how to identify ammolite like a pro.

 

gemstone testing lab

 

Visual Inspection

The visual inspection starts with what form of ammolite you have.  The questions below are relatively easy to answer, but each type will have its own process for identifying them. If you need help valuing and pricing Ammolite then use my free guide.

 

ammolite cabochons

 

Ammolite cabochon –  A cabochon should have a medium to high polish with no pitting. The most common colors you’ll find are red and green with bits of yellow. Most of the shapes are free-form in nature and the bottom of the cabochon should be a dark brown matrix.

 

Is it faceted? I don’t believe you will come across a faceted ammolite because the material doesn’t lend itself to be faceted.

 

ammolite specimen

 

Is it a specimen? Ammolite is found in different forms. You’ll better identify these forms by looking at and inspecting this mineral over time. Here’s a list of characteristics Ammolite displays when it’s a specimen.

  • Common to find red, green, and yellow specimens.
  • Can occasionally find the fossil intact – it will be more brownish with some iridescent color.
  • Specimens can range from small to about the size of your hand.

 

ammolite cabs free form

 

Is it tumbled? Very common to find tumbled ammolite. The polish is high with a radiance.

 

Physical Properties of Ammolite

Let’s take a look at the physical properties of ammolite. Knowing what to look for will help you more easily identify what you’re looking at.

 

Color: Iridescent colors across the spectrum – Red, Orange, Yellow, Green, Blue, Indigo, Violet – Red and Green are the most common

Clarity / Transparency: Transparent to Translucent

Luster: Vitreous – Accepts a bright polish

Cleavage: No true cleavage

Fracture: Uneven, Granular

 

The Streak Test

This is a destructive test, so you need to ensure that you’re allowed to damage the specimen or stone if you choose to use this method.  Once you’ve developed robust knowledge in identifying rocks and minerals, you won’t use destructive tests.

A mineral streak test is when you scrape the stone against a harder surface to see what color remains.

Tumbled specimens are tested by scraping samples across a piece of ungalvanized porcelain, typically known as a streak plate.

 

Magnet Test

Ammolite is not magnetic and doesn’t show an attraction to standard magnets.

 

Hardness Test

I don’t recommend actively testing the hardness of a stone because it’s destructive in nature and doesn’t provide a definite answer to what type of stone it is.  That said, ammolite has a 3.5 to 4 on the Mohs hardness scale.

 

Refractive Index Test

Determining the refractive index, or RI as it’s referred to by gemologists, for ammolite is relatively straightforward, but you’ll need a specific piece of test equipment and the RI fluid to go with it.  Before you place the stone on the refractometer, you want to have a flat, somewhat polished surface to take a reading.

 

Ammolite Refractive Index: 1.52 to 1.68

 

Each gemstone has its own RI, so discovering a sample’s RI can help you figure out what sort of stone it actually is.

 

Step 1 – Place a small bead of RI fluid on the metal surface of the refractometer near the back of the crystal hemicylinder (the window on which the stone will sit).

Step 2 – Place the stone facet face down on the fluid dot and slide it toward the middle of the hemicylinder crystal using your fingers.

Step 3 – Look through the viewer lens without magnification. Continue looking until you see the outline of a bubble, then look at the bottom of this bubble. Take the reading from there, rounding the decimal to the nearest hundredth.

 

Occasionally, you’ll run into the issue of not having a flat surface to work with.  In this instance, you’ll need to leave the top of the refractometer open and hold the rounded stone with your hand.  Hopefully, you can pull a reading off of the gauge.

 

Birefringence Test

Consider testing the birefringence, as well. Birefringence is related to RI. While doing the birefringence test, you will turn the gemstone on the refractometer six times throughout the observation period and note the changes.

Perform a standard RI test. Instead of keeping the stone still, gradually turn it 180 degrees, making each separate turn about 30 degrees. At each 30-degree mark, take a new RI reading.

Subtract the lowest reading from the highest to find the stone’s birefringence. Round it to the nearest thousandth.

 

Birefringence: 0.135 to 0.145

 

Single or Double Refraction

Ammolite has a double refraction of 0.155.

The stone must be transparent for this test to be accurate and beneficial.  If the light won’t pass through the stone, there is no way to test for single or double refraction.

Check for single or double refraction. Use this test on translucent and transparent stones. You can determine whether the stone is only singly refractive (SR) or doubly refractive (DR) to help identify it. Some stones can also be classified as aggregate (AGG).

Turn on the light of a polariscope and place the stone face down on the lower glass lens (polarizer). Look through the top lens (analyzer), turning the top lens until the area around the stone looks darkest. This is your starting point.

Turn the analyzer 360 degrees and watch how the light around the stone changes.

If the stone appears dark and stays dark, it is likely an SR. If the stone starts out light and remains light, it is likely AGG. If the lightness or darkness of the stone changes, it is likely DR.

 

Checking The Diaphaneity

Diaphaneity refers to the mineral’s ability to transmit light. For instance, some minerals are transparent or translucent. A small amount of distortion might occur when they’re thick, but light will pass through them relatively freely.

Ammolite is transparent to translucent.

 

Finding The Specific Gravity

Every stone has its unique specific gravity, which helps us identify them. Specific gravity is one of the best properties to measure when identifying mineral specimens. Most minerals have a narrow range of specific gravity, so getting an accurate measurement can go a long way toward identification.

Specific gravity is a unitless number describing how heavy a mineral is compared to equal volumes of water. For example, if a mineral is three times as dense as water, it’ll have a specific gravity of three. This is useful because while two minerals might be the same size, they’ll each have a different specific gravity.

The larger the sample, the more precise the readings tend to be. Remember that this technique can only be used for single mineral or crystal masses. It will not work for minerals embedded in host rocks.

 

Ammolite Specific Gravity: 2.6 to 2.9

 

As helpful as specific gravity is for identifying minerals, amateurs are usually constrained by the need for more necessary tools for the job. However, one way to work around this is to hold the specimen and note how heavy or heft it feels compared to what you might expect a specimen of that size to weigh.

If you want to determine the specific gravity of your stone like a pro, you’ll need to invest in a higher-end scale.  The OHAUS Density Determination Kit is the one gemologists use.

 

Identifying Rocks and Minerals Like a Pro

Hopefully, you feel confident in your practice of identifying a piece of ammolite after reading and applying this guide.  You’ll be using the visual part of this guide the most, and you’ll get better as you interact with more gemstones.  Before you know it, you’ll be identifying stones like a gemologist.

Feel free to reach out if you encounter any issues or need clarification. I’ll do my best to assist you in the identification process.

Jerred Morris
Latest posts by Jerred Morris (see all)

Pick & Shovel Newsletter

Free rock identification and appraisals when you sign up today. Plus up-to-date with the latest rockhound locations, news, trends, and events.

Leave a Reply

Your email address will not be published. Required fields are marked *

About The Author